Courses in English for exchange students in the academic year 2023/2024

WINTER TERM:

KMT/YIDMA The Introduction to Didactics of Mathematics A				
Number of ECTS credits:	5	Course completion:	Exam	
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Jan Wossala	
Semester in which the cou	rse is taught:	winter		
Description:				
The purpose of this semina in prospective mathematic didactical principles of mathematic to increase pupils' motivati	cs teachers training. Th nematical teaching and t	e course will be struc	tured to present main	

Number of ECTS credits:	5	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Martina Uhlířová
Semester in which the cou	irse is taught:	winter, summer	
Description:			
The course is designed for	students of primary ar	nd preprimary school tead	cher training. The aim o
the course is: to familiaria	ze the students with n	nathematical activities th	at develop creativity o
pupils. Emphasis is placed	on interdisciplinary re	lationships and active wo	ork of students (didacti
games, didactic brix-box, p	aper handing, solids cro	eation).	

KMT/ YCAL1 Calculu	s 1		
Number of ECTS credits:	6	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Jitka Laitochova
Semester in which the cou	rse is taught:	winter	
Description:			
Differential calculus of real terms of the theory like rea minima and graph sketchin	al functions of a real va		

Content: Basic terms and concepts; limits; derivatives; transcendental functions; application of derivatives; curve sketching with derivatives; approximations of functions (differentials, Taylor's theorem); derivatives of implicit functions; sequences.

KMT/ YCAL3 Calculus 3

Number of ECTS credits:	6	Course completion:	Exam
Completion	50 % attendance,	Lecturer:	Jitka Laitochova
requirements:	tutorial work		
Semester in which the cour	se is taught:	winter	
Description:		·	
Differential calculus of func	tions of two or more va	ariables. Applications of p	artial derivatives are
demonstrated.			
Main topics:			
n-dimensional space, metric		-	•
Function of several variable	-	-	e function z = f (x, y).
Limit of a function of severa			
Continuity of functions of se		osite functions of several	variables. Theorem or
the continuity of composite			
Partial derivatives of function function $f(x, y)$. Higher part		-	f partial derivative of a
Differentiable function. Con	nplete differential. Geo	metrical meaning of the	complete differential
df(x, y). Complete differenti	als of higher orders.		
Partial derivatives of compo	site functions. Higher	derivatives of a composit	e function.
	nula		
Taylor and Maclaurin's form	iuiu.		
Taylor and Maclaurin's form Maxima, Minima, and Sadd		orem	
•	le Points. Fermat's theo	orem	
Maxima, Minima, and Sadd	le Points. Fermat's theo al extrema. derivatives. Theorems	on the existence of a der	-

KMT/YAG1B Algebra course 1

Number of ECTS credits:	6	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Tomáš Zdráhal
Semester in which the cou	rse is taught:	winter	
Description:			
The course main objective	is an active understand	ing of basic algebraic con	cepts necessary for
further study of algebra an	d other mathematical o	disciplines.	

Introduction to propositional and predicate logic. Algebraic structures with one or two operations. Vector spaces - linear dependency, basis, dimensions, orthogonality. Linear algebra.

KMT/YAG3B Algebra course 3				
Number of ECTS credits:	6	Course completion:	Exam	
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Tomáš Zdráhal	
Semester in which the cou	rse is taught:	winter		

Description:

The aim is understanding of algebraic solvability of algebraic equations.

Polynomials

Decomposition of polynomials of one indeterminate over the field of complex and field of real numbers. Symmetric polynomials

The main theorem on symmetric polynomials, using symmetric polynomials.

Algebraic solutions of algebraic equations

Binomial equations, algebraic solvability of algebraic equations of the second, third and fourth degrees.

KMT/YIAMB ICT application in Mathematics

Number of ECTS credits:	4	Course completion:	Exam
Completion	50 % attendance,	Lecturer:	David Nocar
requirements:	tutorial work		
Semester in which the cou	rse is taught:	winter	

Description:

The subject is focused on introducing to students the possibilities of mathematical software, both applying MS Office (Microsoft Equation, MathType) and specific mathematical applications used in mathematics teaching at elementary schools. It meets the requirements of educating future mathematics teachers within the state informational politics and of informational literacy of all teachers.

It works with basic types of mathematical instructional environment (dynamic geometry, spreadsheets, computer algebraic systems). Individual systems are demonstrated by Cabri Geometrie (or: CaR Geogebra, GEONExT), MS Excel (or: OpenOffice Calc and Google Spreadsheets), Imagine Logo (or: Comenius Logo) and Derive.

SUMMER TERM

KMT/ YCME Creativity in Mathematics Education				
Number of ECTS credits:	5	Course completion:	Exam	
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Martina Uhlířová	
Semester in which the cou	rse is taught:	winter, summer	·	
Description:				
The course is designed for the course is: to familiariz pupils. Emphasis is placed	e the students with m	athematical activities th	at develop creativity of	

games, didactic brix-box, paper handing, solids creation).

KMT/YETM English Terminology in Mathematics

Number of ECTS credits:	4	Course completion:	Exam		
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Jitka Laitochova		
Semester in which the cou	rse is taught:	summer			
Description:					
The aim of the course is to	acquire basic English m	athematical terminology.			

We work with English mathematical texts and recordings of mathematical lectures. We are interested in the basic concepts, propositions and problems of selected mathematical disciplines such as algebra, geometry and calculus.

We focus on school mathematics, we work with English mathematics textbooks for elementary schools. The subject is taught in English.

Number of ECTS credits:	4	Course completion:	Exam
Completion	50 % attendance,	Lecturer:	Jan Wossala
requirements:	tutorial work		
Semester in which the cou	rse is taught:	summer	
Description:			
and individual work of stud be presented.		me robotic devices for use	e in primary schools wi
to integrate computing into homework purposes for ele	o mathematics instructi ementary school studer	•	-
to integrate computing into homework purposes for ele	o mathematics instructi ementary school studer s 2	ion, and to use computers	for individual work an
to integrate computing into homework purposes for ele KMT/ YCAL2 Calculu Number of ECTS credits:	o mathematics instructi ementary school studer s 2	ion, and to use computers	-
to integrate computing into homework purposes for ele KMT/ YCAL2 Calculu Number of ECTS credits: Completion	o mathematics instructi ementary school studer s 2	ion, and to use computers nts. Course completion:	for individual work an
to integrate computing into homework purposes for ele KMT/ YCAL2 Calculu Number of ECTS credits: Completion requirements:	 mathematics instruction mentary school studen s 2 6 50 % attendance, tutorial work 	ion, and to use computers nts. Course completion:	for individual work an
to integrate computing into homework purposes for ele	 mathematics instruction mentary school studen s 2 6 50 % attendance, tutorial work 	ion, and to use computers nts. Course completion: Lecturer:	for individual work an

KMT/ YCAL4 Calculus 4

Number of ECTS credits:	6	Course completion:	Exam
Completion	50 % attendance,	Lecturer:	Jitka Laitochova
requirements:	tutorial work		
Semester in which the cou	rse is taught:	summer	
Description:			
Infinite sequences and infi	nite series of constants	and functions. Basic theo	ry of infinite series
Applications of power serie	es.		-
Main topics:			
Main topics: Infinite sequences of numb	pers.		
•		pts.	
Infinite sequences of numb	basic terms and conce	pts.	
Infinite sequences of numb Infinite series of numbers -	basic terms and conce	pts.	
Infinite sequences of numb Infinite series of numbers - Series with non-negative m	basic terms and conce nembers.	pts.	

KMT/YAG2B Algebra course 2				
Number of ECTS credits:	6	Course completion:	Exam	
Completion	50 % attendance,	Lecturer:	Tomáš Zdráhal	
requirements:	tutorial work			
Semester in which the cou	rse is taught:	summer		
Description:		·		
The course focuses on expl	oring the algebraic prop	erties of the structure of	polynomials over a	
general range, respectively	. field integrity. The mai	n differences algebraic a	nd functional approach	
to polynomials. Students w	vill also address the divis	ibility of polynomials ove	er a general body and	
some methods of finding th			c ,	

Number of ECTS credits:	6	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Tomáš Zdráhal
Semester in which the course is taught:		summer	
Description:			
The course aims to fully un Properties of groups. Lagra homomorphism. Lattices a Boolean algebras.	inge's theorem in the g	roup theory. Factor group	s. Group